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To the Editor: 61 

Chronic rhinosinusitis (CRS) is defined as a chronic inflammation of the nose and 62 

paranasal sinuses. It is estimated that CRS affects more than 100 million patients 63 

worldwide and it involves high management costs and poor quality of life (QOL) in 64 

affected subjects1. The presence of eosinophils in nasal polyps is linked to higher 65 

postoperative visual analogue pain scores (VAS), impaired QOL, and high recurrence 66 

rate2. A better understanding of the ratio of eosinophils (RE) to infiltrating 67 

inflammatory cells in tissue is needed to improve diagnostic and treatment strategies 68 

for affected patients3. 69 

Thus far, there are no uniform standards or rules regarding diagnosis of eosinophilic 70 

chronic rhinosinusitis with nasal polyps (eCRSwNP), and a variety of problems exist 71 

in practice. Some researchers recommend that the amounts of eosinophils per high 72 

power field (HPF) should be more than 15 or 1004, 2. Most researchers support the 73 

assessment of RE in several random HPFs, with eCRSwNP diagnosed when RE 74 

is >10%5, 6. The traditional method (REslide-tm) dictates that the pathologist assesses the 75 

ratio of eosinophils to infiltrating inflammatory cells (which include eosinophils, 76 

neutrophils, lymphocytes, plasma cells, etc.) in 10 random HPFs for the tissue6. 77 

However, RE obviously differs between various HPFs. Preliminary studies have 78 

shown sampling errors among the estimates based on 10 random HPFs and in the 79 

overall eosinophil counts in the total sample. Therefore, we considered the RE of 80 

whole-slide imaging (WSI) as the gold standard (REslide-actual) for assessing eCRSwNP 81 
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for its lack of sampling error. However, it is difficult in practice because it is both 82 

time-consuming and subjective.  83 

Artificial intelligence (AI), especially deep learning algorithms, has made great 84 

progress and is similar to or even better than humans in terms of visual perception and 85 

speech recognition. Therefore, we aimed to establish an artificial intelligence 86 

evaluation platform (AICEP, REslide-predict) to diagnose eCRSwNP rapidly and 87 

accurately via deep learning and WSI. 88 

A total of 195 nasal polyp specimens were obtained from three affiliated hospitals of 89 

Sun Yat-sen University (The Third Hospital=179, The First Hospital=9, The Fifth 90 

Hospital=7). After WSI, we automatically extracted 26589 patches in the lamina 91 

propria of mucosa and marked the RE in each patch (REpatch-actual, see the Methods 92 

section in this article’s Online Repository at www.jacionline.org). The patches were 93 

classified as the training dataset, the internal validation dataset and independent 94 

external test dataset (Fig. E1). 95 

In this study, our AICEP compared three common architectures (Resnet50, Xception, 96 

and Inception V3) for application of a transfer learning algorithm to assess their 97 

performance in the classification and regression of patches extracted from WSIs (Fig. 98 

1). Within 100 epochs (iterations through the entire training dataset), the retrained 99 

weights were saved due to the absence of further improvement in the mean absolute 100 

error (MAE) (Fig. E2, A) and mean square error loss (Fig. E2, B).  101 

First, we completed the qualitative classification of both internal validation and 102 
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external test datasets using Resnet50, Xception, and InceptionV3 models. WSI results 103 

were classified as eosinophilic when REslide exceeded 10% (see the Methods section 104 

in this article’s Online Repository at www.jacionline.org). The respective sensitivities 105 

for the internal and external datasets were 97.0% and 93.5% for Resnet50, 90.1% and 106 

84.2% for Xception, and 93.9% and 90.3% for InceptionV3 model, respectively. The 107 

corresponding specificities were 86.0% and 84.6%, 88.2% and 88.4%, and 88.2% and 108 

86.4%, individually. Our study showed that internal authentication was far superior to 109 

external authentication (Fig. E3). The AUCs from internal validation and external test 110 

datasets of Inception V3 were 0.974 and 0.957, respectively, which indicated that this 111 

was the best model (Fig. 2, A and B).  112 

Second, the convolutional neural network was visualized to identify the region of 113 

eosinophils, which confirmed that the model was able to learn from the characteristics 114 

of eosinophils only (Fig. 2, C and D). 115 

In addition, for the quantitative analysis of AICEP, we found that the MAEs of 116 

REpatch-actual and REpatch-predict in both internal validation dataset and external test 117 

dataset were 4.3% and 5.8%. Meanwhile, both the consistency of intraclass 118 

correlation coefficient and the agreement of REpatch-predict and REpatch-actual in the 119 

internal validation dataset and external test dataset were greater than 0.95, indicating 120 

high consistency from AICEP analysis (Table E1). 121 

When compared with REslide-predict from AICEP, pathologist simulation and REslide-actual 122 

from the internal validation dataset of 12 patients, AICEP can diagnose all the 12 123 
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patients correctly, while the traditional method only made 10 correct diagnoses, 124 

unfortunately, with two misdiagnosed patients (NO. 4 and 5; Fig. 2, E). Similarly, 125 

when we compared REslide-predict from AICEP with pathologist simulation and 126 

REslide-actual from the external test dataset of 16 patients, AICEP correctly diagnosed 127 

all 16 patients, while the traditional method may misdiagnosed 4 patients (NO. 6, 7, 8, 128 

and 10; Fig. 2, F). 129 

Finally, we compared the diagnostic time between AICEP and pathologist judgement. 130 

The result showed that AICEP (5.4 ± 0.87 min) took less time than REslide-tm (12.7 ± 131 

2.78 min) and REslide-actual (148.6 ± 34.36 min, P < 0.0001, Table E2).  132 

In our study, we advocated WSI assessment instead of REslide-tm. While WSI is 133 

undoubtedly more accurate, it costs an immense amount of time. What’s worse, in 134 

China, the medical resources in the Midwest are significantly worse than those in the 135 

eastern coastal areas, and pathologists are inadequate, especially in some primary 136 

hospitals. To some extent, AICEP can well solve this problem, as it can diagnose 137 

nasal polyp pathological types by WSI and AI more efficiently. 138 

AI-facilitated diagnosis can alleviate doctors' workload and contribute to high-quality 139 

medical care provision to patients in need7, 8. It is well known that the diagnosis of 140 

disease depends on the intuition and experience of pathologists. Moreover, large 141 

workload can lead to pathologists’ working inefficiency and increasing the chance of 142 

making mistakes. Our results showed that REslide-tm may result in wrong diagnosis, 143 

especially when the proportion of tissue eosinophils was approximately 10%. 144 
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However, this problem can be resolved by our AICEP, which can diagnose all 145 

patients accurately.  146 

Although AI has already shown great potentials for assisting doctors in diagnosis and 147 

decision making, there are still some limitations. For instance, the real-world 148 

diagnostic accuracy of AI was lower than that reported in their previous study 149 

conducted with screening datasets9. Our study showed the similar result that AICEP 150 

performed better in the internal validation dataset than in the external test dataset. In 151 

our study, the internal validation dataset and training dataset came from a similar 152 

process regarding slicing, staining, and WSI scanning, whereas these aspects may 153 

differ in the external test dataset. Thus, it is important to optimize AICEP with data 154 

from multiple centers.  155 

Overall, AICEP is the first use of deep learning in combination with WSI in nasal 156 

polyp diagnosis. It can evaluate the pathological characterizations of nasal polyps in a 157 

faster and more accurate way. We believe that AICEP will be used widely in 158 

particular in primary hospitals, even all around the world through the cloud platform. 159 

 160 

 161 

 162 

 163 

 164 
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Figure Legend 219 

Figure 1. Schematic of processes. A, nasal endoscopic examination. B, samples of 220 

nasal polyps obtained by functional endoscopic sinus surgery (FESS). C, made HE 221 

slides. D, digitized the slides into the whole slide images (WSI) by scanner. E, 222 

delineated the lamina propria to obtain region of interest (ROI). F, patches extracted 223 

from ROI of WSI and corresponding RE tags. G, trained transfer learning models that 224 

can be deployed to diagnose eCRSwNP. H, REslide-predict of patients according to the 225 

model. I, chose the appropriate treatment strategy. 226 

Figure 2. Performance of AICEP. A and B, the receiver operating characteristic 227 

curves (ROC) and the area under ROC (AUC) for detection of patches with RE≥10% 228 

from patches with RE<10%. A, comparison of AUC/ROC for Resnet50, Xception and 229 

Inception V3 models using internal test dataset. The Inception V3 model had an AUC 230 

(0.974) significantly greater than the other two models. B, comparison of AUC/ROC 231 

for Resnet50, Xception and Inception V3 models in independent external test dataset. 232 

The Inception V3 model also provided the best AUC (0.957) compared to the other 233 

ones. C and D, visualization and explainability of CNN models using Grad-CAM to 234 

classify patches with REpatch≥10% from patches with REpatch<10%. C, 235 

REpatch=86.66%, eosinophils were marked by red arrows. D, corresponding 236 

Grad-CAM images, the highlighted areas were discriminative features of eosinophils. 237 

E and F, diagnostic efficiency comparison of AICEP and current method. Black dot 238 

represented current method result, and 50 times bootstrap were performed to evaluate 239 

its random error, blue line was the actual value of WSI and yellow line was the 240 
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AICEP predicted value of WSI, red dashed line was the diagnostic boundary of 10%. 241 

E, internal validation dataset: all patients were accurately diagnosed by AICEP while 242 

current method may make wrong diagnosis in patient NO. 4 and 5. F, external test 243 

dataset: all patients were accurately diagnosed by AICEP while current method may 244 

make wrong diagnosis in patient NO. 6, 7, 8 and 10.   245 
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Table E1. Consistency assessment for AICEP in internal validation dataset and 

external test dataset according to the REpatch-actual and REslide-actual. 

Level 

Internal Validation Dataset External Test Dataset 

ICC Consistency ICC Agreement ICC Consistency ICC Agreement 

REpatch 
0.981

˄0.979,0.983˅  

0.981

˄0.979,0.982˅  

0.977

˄0.975,0.979˅  

0.976

˄0.970,0.980˅  

REslide 

0.999

˄0.997,1.000˅  

0.999

˄0.998,1.000˅  

0.995

˄0.985,0.998˅  

0.993

˄0.973,0.998˅  

 
RE, the ratio of eosinophils; ICC, intraclass correlation coefficient. 
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Table E2. Comparison of time-consuming between AICEP and pathologists. 

Method Mean time ± SD (min) 95% CI 

REslide-predict 5.4±0.87 [5.28, 5.52] 

REslide-tm 12.7±2.78 [12.31, 13.09] 

REslide-actual 148.6±34.36 [143.78, 153.42] 

 



ROI of WSI E

A. Identification B. FESS C. Slide D. Digitization of WSI

NP: nasal polyps; MT: middle turbinate; UP: uncinate process.

Figure 1,A-D



Classification

Xception

Resnet50

Regression

neCRSwNP

eCRSwNP

Inception V3

RE, Ratio of Eosinophils

Steroid hormone

Macrolide antibiotic

eCRSwNP

RE = 86%

neCRSwNP

RE = 0%

F. Inputs H. OutputsG. Models  I.Strategy E. Label ROI of WSI

Figure 1,E-I
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METHODS 2 

Training and internal validation datasets 3 

Biopsies of patients with CRSwNP (n = 1465) were obtained from the Department of 4 

Otolaryngology in the Third Affiliated Hospital of Sun Yat-sen University (SYSU) in China 5 

from January 2008 to December 2018. Following screening for staining, size, and quality of 6 

specimens, 179 patients were used in this analysis. The patients were randomly divided into two 7 

groups: 167 patients in the training dataset and 12 patients in the internal validation dataset. After 8 

all slides were scanned through an automatic digital slide scanner (Panoramic 250 FLASH, 9 

3DHISTECH Ltd., Budapest, Hungary), we obtained 179 digital whole slide images (WSIs). The 10 

lamina propria of mucosa were sketched, excluding large glands, through an automated slide 11 

analysis platform (ASAP) (Radboud University Medical Center, The Netherlands) to yield 12 

regions of interest (ROI). Patches in ROI were automatically extracted under 400X high-power 13 

field using Openslide (version 3.4.1, University of Pittsburgh, Pittsburgh, PA, USA). There were 14 

167 WSIs containing 23048 patches for the training dataset and 12 WSIs containing 1577 15 

patches for the internal validation dataset (Fig. E1). 16 

External test dataset 17 

Sixteen patients (16 WSIs) with nasal polyps were randomly selected from the First Affiliated 18 

Hospital of SYSU (n=9) and the Fifth Affiliated Hospital of SYSU (n=7) from January 2017 to 19 

December 2018. Independent preparations by each hospital were used for hematoxylin and eosin 20 

staining as well as WSI scanning. In total, 1964 patches were obtained using the same method 21 

mentioned above. 22 
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Labeling 23 

In total, 26,589 patches were independently described and labeled by a committee comprising 24 

two competent pathologists with more than 10 years of experience, and an expert pathologist 25 

with more than 30 years of experience who was consulted in case of disagreement. The two 26 

competent pathologists identified and counted the number of eosinophils (n1), number of 27 

lymphocytes (n2), number of neutrophils (n3), and number of plasma cells (n4) in each patch. 28 

The number of infiltrating inflammatory cells was regarded as the sum (t), and the ratio of 29 

eosinophils (REpatch-actual) was n1/t. When the two pathologists’ assessment of REpatch-actual 30 

differed by ≤5%, the average value was used. If the difference was greater than 5%, the patch 31 

was rechecked by the expert pathologist, and the value was corrected as necessary. These 32 

assessments yielded the average of all patches from WSI, designated as REslide-actual. CRSwNP 33 

patients were classified as eosinophilic when the proportion of tissue eosinophils exceeded 10% 34 

of total infiltrating inflammatory cells as previously reported1; otherwise, they were regarded as 35 

non-eosinophilic CRSwNP. 36 

Deep learning and transfer learning methods 37 

In this study, our artificial intelligence chronic rhinosinusitis evaluation platform (AICEP) 38 

compared three commonly used architectures (Resnet50, Xception, and Inception V3) for 39 

application of a transfer learning algorithm to assess their performance in the classification and 40 

regression of patches extracted from WSIs. Each model loaded the weights pre-trained on the 41 

ImageNet dataset, then removed their top layer. Next, to distinguish patches with REpatch values 42 

greater or less than the truncated value using a classification algorithm, a full-connection layer 43 

with two neurons was added and each neuron contained weights and an activation function, so it 44 

can map input value to output value nonlinearly. To predict exact REpatch values with a regression 45 
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algorithm, we chose the model with the greatest area under the curve (AUC) and added a full-46 

connection layer containing only one neuron. Importantly, no activation function was used at this 47 

time to ensure that the model exhibited a broader output value. Within 100 epochs (iterations 48 

through the entire training dataset), the retrained weights were saved due to the absence of 49 

further improvement in the mean absolute error (MAE) (Fig. E2, A) and the mean square error 50 

loss (MSEL) (Fig. E2, B). Finally, the parameters of all layers of quantitative regression 51 

architecture were fine-tuned in accordance with the input images and corresponding labels (Fig. 52 

1). 53 

To train and evaluate our models, we adopted the Keras (version 2.2) framework using 54 

Tensorflow (version 1.8) backend within Python (version 3.6) programming language, including 55 

libraries such as numpy, matplotlib, and Scikit-learn. Computing power was provided by one 56 

Tesla V100 GPU with 32GB memory on a Nvidia DGX1 server, which had eight Tesla V100 57 

GPUs, 512 GB DDR4 memory, and 7 TB SSD. 58 

Model and algorithm performance evaluation 59 

Qualitative classification 60 

For the internal validation dataset and external test dataset using Resnet50, Xception, and 61 

InceptionV3 for data training, AICEP provided an effective approach for qualitative 62 

classification. WSI results were classified as eosinophilic when REslide exceeded 10%, as 63 

previously mentioned. The sensitivity (true positive rate) and specificity (false positive rate) of 64 

the confusion matrices of these three models were calculated, as were the areas under the 65 

receiver operating characteristic curve (AUC). The model with the highest AUC value was 66 

selected for subsequent quantitative analyses. In addition, to verify whether the model was 67 
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trained correctly based on the characteristics of eosinophils, we used visual gradient-weighted 68 

class activation mapping (Grad-CAM). 69 

Quantitative analysis 70 

Evaluation of REpatch in internal validation and external test datasets of AICEP 71 

All patches in both internal validation and external test datasets were input into the AICEP 72 

model for simulation, which produced REpatch-predict. In addition, the MAE of REpatch-predict and 73 

REpatch-actual was calculated. The concordance between REpatch-predict and REpatch-actual was evaluated 74 

using the intraclass correlation coefficient.  75 

REslide comparison between internal validation and external test datasets 76 

For the internal validation and external test datasets, we compared REslide-predict and REslide-actual 77 

separately. The concordance between REslide-predict and REslide-actual was evaluated via intraclass 78 

correlation coefficient. In addition, we randomly selected 10 REpatch values of each WSI analysis 79 

by a bootstrap method and calculated the average. The bootstrap process was repeated 50 times 80 

for each WSI analysis to evaluate and compare the diagnostic effect of the traditional method 81 

and of AICEP. 82 

Diagnostic time comparison between AICEP and pathologists  83 

Times for REslide-predict, REslide-tm, and REslide-actual were calculated. 84 

Statistical analysis 85 

Using a bootstrap simulation of 10 random fields for diagnosis, each WSI was repeated 50 times 86 

and compared with REslide-actual. The intraclass correlation coefficient was used to assess 87 

agreement between REpredict with REactual. Receiver operating characteristic curves (ROC) were 88 



adopted to evaluate the diagnostic results of AICEP on eCRSwNP. All tests were two-sided, and 89 

P < 0.05 was considered statistically significant.90 
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Figure E1. Workflow diagram. It illustrated the overall experimental design, and the flow of 99 

whole slide images through extraction and labeling process, the training of transfer learning 100 

models using internal dataset, and the evaluating of the models with internal validation dataset 101 

and independent external test dataset.  102 

Figure E2. Plot showed the performance in the training and internal validation datasets. Mean 103 

absolute error was plotted against the training epoch (A) and mean square error loss was plotted 104 

against the training epoch (B) during training the quantitative regression architecture over the 105 

course of 100 epochs. The mean absolute error and loss of validation showed great performance 106 

with little overfitting due to the diversity of the training dataset. 107 

Figure E3. Confusion matrix of models’ classification of patch with RE≥10% from patch with 108 

RE<10%. A, B, C, Confusion matrix of internal validation dataset for models of Resnet50, 109 

Xception and Inception V3, respectively. D, E, F, Confusion matrix of independent external test 110 

dataset for models of Resnet50, Xception and Inception V3, respectively.  111 

112 



Table E1. Consistency assessment for AICEP in internal validation dataset and external test 113 

dataset according to the REpatch-actual and REslide-actual. 114 

Table E2. Comparison of time-consuming between AICEP and pathologists.  115 
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